Package index
-
acc() - acc
-
bin.mod - Example model for a survival outcome
-
boot_lp() - Counter Factual Model - summary
-
boot_sest() - Counter Factual Model - summary
-
cfmDataSumm() - Summarising data within a Counter Factual Model (CFM)
-
cfmDataVis() - Visualising data within a CFM
-
cfmDataVis_fac() - Visualising Categorical Data
-
cfmDataVis_num() - Visualising Numerical Data
-
cfmSumm.flexsurvreg() - Counter Factual Model - summary
-
cfmSumm.glm() - Counter Factual Model - summary
-
coef(<psc>) - Returns the coefficient estimate of a psc object.
-
cont.mod - Example model for a survival outcome
-
count.mod - Example model for a survival outcome
-
data - Example Dataset of patients with aHCC receiving Lenvetanib
-
e4_data - Example Dataset of patients treated with GemCap in the ESPAC-4 trial
-
facVisComp() - Visualising Categorical Data
-
gemCFM - Model for a survival outcome based on Gemcitbine patients from ESPAC-3
-
init() - Function for estimating initial parameter values
-
lik.flexsurvreg() - Likelihood function for a psc model of class 'flexsurvreg'
-
lik.glm() - Likelihood function for a psc model of class 'glm'
-
modelExtract() - A generic function for extracting model information
-
modelExtract(<flexsurvreg>) - A generic function for extracting model information
-
modelExtract(<glm>) - A generic function for extracting model information
-
modelExtract(<lmerMod>) - A generic function for extracting model information
-
modp() - modp
-
numVisComp() - Visualising Numerical Data
-
plot(<psc>) - Function for Plotting PSC objects
-
plot(<psc.binary>) - Function for Plotting PSC objects
-
plot(<psc.cont>) - Function for Plotting PSC objects
-
plot(<psc.count>) - Function for Plotting PSC objects #' A function which illsutrates the predicted response under the counter factual model and the observed response under the experimental treatment(s).
-
plot(<psc.flexsurvreg>) - Function for Plotting PSC objects
-
plotCFM() - Function for Plotting PSC objects
-
postSummary() - Posterior Summary
-
print(<psc>) - Personalised Synthetic Controls - print
-
print(<quiet_gglist>) - quiet_gglist
-
print(<quiet_gtsumm>) - quiet_gtsumm
-
print(<quiet_list>) - quiet_gtsumm
-
psc.object - Fitted
pscobject -
pscCFM() - Creating a CFM model which can be shared
-
pscData() - A function which structures the Data Cohort in a format for model estimation
-
pscData_addLik() - A function that add a likelihood for estimation to the pscObject
-
pscData_addtrt() - A function that includes a treatment indicator when multiple treatment comparisons are required
-
pscData_error() - A function which performs error checks between the DC and CFM
-
pscData_match() - A function to ensure that data from the cfm and data cohort are compatible
-
pscData_miss() - A function which removes missing data from the DC
-
pscData_structure() - A function which structures the Data Cohort in a format for model estimation
-
pscEst() - Function for performing Bayesian MCMC estimation procedures in 'pscfit'
-
pscEst_run() - Running the Bayesian MCMC routine A procedure which runs the MCMC estimation routine
-
pscEst_samp() - Starting conditions for Bayesian MCMC estimation procedures in 'pscfit' A procedure which runs the sampling process for MCMC estimation
-
pscEst_start() - Starting conditions for Bayesian MCMC estimation procedures in 'pscfit' A procedure which sets the starting conditions for MCMC estimation
-
pscEst_update() - Updating the posterior distribution as part of the MCMC estimation process A procedure which performs a single update of the posterior distribution
-
pscfit() - Personalised Synthetic Controls model fit
-
spline_surv_est() - Counter Factual Model - summary
-
summary(<psc>) - Personalised Synthetic Controls - summary
-
surv.mod - Example model for a survival outcome
-
visComp() - Visualising Comparisons between a CFM and a DC