Skip to contents

All functions

acc()
acc
bin.mod
Example model for a survival outcome
boot_lp()
Counter Factual Model - summary
boot_sest()
Counter Factual Model - summary
cfmDataSumm()
Summarising data within a Counter Factual Model (CFM)
cfmDataVis()
Visualising data within a CFM
cfmDataVis_fac()
Visualising Categorical Data
cfmDataVis_num()
Visualising Numerical Data
cfmSumm.flexsurvreg()
Counter Factual Model - summary
cfmSumm.glm()
Counter Factual Model - summary
coef(<psc>)
Returns the coefficient estimate of a psc object.
cont.mod
Example model for a survival outcome
count.mod
Example model for a survival outcome
data
Example Dataset of patients with aHCC receiving Lenvetanib
e4_data
Example Dataset of patients treated with GemCap in the ESPAC-4 trial
facVisComp()
Visualising Categorical Data
gemCFM
Model for a survival outcome based on Gemcitbine patients from ESPAC-3
init()
Function for estimating initial parameter values
lik.flexsurvreg()
Likelihood function for a psc model of class 'flexsurvreg'
lik.glm()
Likelihood function for a psc model of class 'glm'
modelExtract()
A generic function for extracting model information
modelExtract(<flexsurvreg>)
A generic function for extracting model information
modelExtract(<glm>)
A generic function for extracting model information
modelExtract(<lmerMod>)
A generic function for extracting model information
modp()
modp
numVisComp()
Visualising Numerical Data
plot(<psc>)
Function for Plotting PSC objects
plot(<psc.binary>)
Function for Plotting PSC objects
plot(<psc.cont>)
Function for Plotting PSC objects
plot(<psc.count>)
Function for Plotting PSC objects #' A function which illsutrates the predicted response under the counter factual model and the observed response under the experimental treatment(s).
plot(<psc.flexsurvreg>)
Function for Plotting PSC objects
plotCFM()
Function for Plotting PSC objects
postSummary()
Posterior Summary
print(<psc>)
Personalised Synthetic Controls - print
print(<quiet_gglist>)
quiet_gglist
print(<quiet_gtsumm>)
quiet_gtsumm
print(<quiet_list>)
quiet_gtsumm
psc.object
Fitted psc object
pscCFM()
Creating a CFM model which can be shared
pscData()
A function which structures the Data Cohort in a format for model estimation
pscData_addLik()
A function that add a likelihood for estimation to the pscObject
pscData_addtrt()
A function that includes a treatment indicator when multiple treatment comparisons are required
pscData_error()
A function which performs error checks between the DC and CFM
pscData_match()
A function to ensure that data from the cfm and data cohort are compatible
pscData_miss()
A function which removes missing data from the DC
pscData_structure()
A function which structures the Data Cohort in a format for model estimation
pscEst()
Function for performing Bayesian MCMC estimation procedures in 'pscfit'
pscEst_run()
Running the Bayesian MCMC routine A procedure which runs the MCMC estimation routine
pscEst_samp()
Starting conditions for Bayesian MCMC estimation procedures in 'pscfit' A procedure which runs the sampling process for MCMC estimation
pscEst_start()
Starting conditions for Bayesian MCMC estimation procedures in 'pscfit' A procedure which sets the starting conditions for MCMC estimation
pscEst_update()
Updating the posterior distribution as part of the MCMC estimation process A procedure which performs a single update of the posterior distribution
pscfit()
Personalised Synthetic Controls model fit
spline_surv_est()
Counter Factual Model - summary
summary(<psc>)
Personalised Synthetic Controls - summary
surv.mod
Example model for a survival outcome
visComp()
Visualising Comparisons between a CFM and a DC